- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
22
- Author / Contributor
- Filter by Author / Creator
-
-
Yang, Samuel (3)
-
Balboni, Imelda (1)
-
Blish, Catherine A (1)
-
Boyd, Scott D (1)
-
Chan, Simon A (1)
-
Chen, Bifan (1)
-
Chinthrajah, R Sharon (1)
-
Craig, Erin (1)
-
Crittenden, Christopher M (1)
-
Cunningham-Rundles, Charlotte (1)
-
DeJager, Wade (1)
-
Drapeau, Elizabeth M (1)
-
Goldman, Jason D (1)
-
Guo, Hong (1)
-
Guthridge, Joel M (1)
-
Haynes, Barton F (1)
-
Heath, James R (1)
-
Hensley, Scott E (1)
-
Hoh, Ramona A (1)
-
Hu, Mingtao (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2026
-
Swansiger, Andrew K; Crittenden, Christopher M; Chan, Simon A; Yang, Samuel H; Kou, Dawen; Prell, James S; Chen, Bifan (, Analytical Chemistry)
-
Zaslavsky, Maxim E; Craig, Erin; Michuda, Jackson K; Sehgal, Nidhi; Ram-Mohan, Nikhil; Lee, Ji-Yeun; Nguyen, Khoa D; Hoh, Ramona A; Pham, Tho D; Röltgen, Katharina; et al (, Science)Clinical diagnosis typically incorporates physical examination, patient history, various laboratory tests, and imaging studies but makes limited use of the human immune system’s own record of antigen exposures encoded by receptors on B cells and T cells. We analyzed immune receptor datasets from 593 individuals to develop MAchine Learning for Immunological Diagnosis, an interpretive framework to screen for multiple illnesses simultaneously or precisely test for one condition. This approach detects specific infections, autoimmune disorders, vaccine responses, and disease severity differences. Human-interpretable features of the model recapitulate known immune responses to severe acute respiratory syndromecoronavirus2, influenza, and human immunodeficiency virus, highlight antigen-specific receptors, and reveal distinct characteristics of systemic lupus erythematosus and type-1 diabetes autoreactivity. This analysis framework has broad potential for scientific and clinical interpretation of immune responses.more » « lessFree, publicly-accessible full text available February 21, 2026
-
Zhang, Dongdong; Yang, Samuel; Yuan, Xiaohui; Zhang, Ping (, iScience)
An official website of the United States government
